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Abstract
We recall definitions of the electronic transport properties, direct coefficients like electrical and
thermal transport conductivities and crossed thermoelectric coefficients like the Seebeck, Peltier
and Thomson coefficients. We discuss the links between the different electronic transport
coefficients and the experimental problems in measuring these properties in liquid metals.

The electronic transport properties are interpreted in terms of the scattering of electrons by
‘pseudo-atoms’. The absolute thermoelectric power (ATP), thermopower or Seebeck coefficient
is known as the derivative of the electrical resistivity versus energy. The key is to understand the
concept of resistivity versus energy.

We show that the resistivity follows approximately a 1/E curve. The structure factor
modulates this curve and, for a Fermi energy corresponding to noble and divalent metals,
induces a positive thermopower when the free electron theory predicts a negative one. A second
modulation is introduced by the pseudopotential squared form factor or equivalently by the
squared t matrix of the scattering potential. This term sometimes introduces an anti-resonance
(divalent metals) which lowers the resistivity, and sometimes a resonance having an important
effect on the transition metals. Following the position of the Fermi energy, the thermopower can
be positive or negative. For heavy semi-metals, the density of states splits into an s and a p
band, themselves different from a free electron E0.5 curve. The electrons available to be
scattered enter the Ziman formula. Thus if the density of states is not a free electron one, a third
modulation of the ρ ∼= 1/E curve is needed, which also can change the sign of the
thermopower.

For alloys, different contributions weighted by the concentrations are needed to explain the
concentration dependent resistivity or thermopower. The formalism is the same for amorphous
metals. It is possible that this mechanism can be extended to high-temperature crystalline alloys
or even disordered semiconductors since we can separate the transport coefficients between the
effect of the number of charge carriers and a scattering term linked to carrier mobility.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The subject of this work is mainly the understanding of
the trends of the thermopower of liquid and amorphous
metals (normal, noble, transition, semi-metals and alloys) as
a function of valence, composition, temperature, pressure,
. . . linked to the behaviour of the electrical resistivity. It is
not excluded that the developed formalism may be adapted

to explain these properties in the case of solid alloys or
compounds.

2. The electronic transport coefficients

If the electrical and thermal conductivity are in general well
understood, this is not the case for the thermoelectric effects
(Peltier, Thomson and Seebeck), which are more complex.

0953-8984/08/114103+14$30.00 © 2008 IOP Publishing Ltd Printed in the UK1
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The electronic transport coefficients and the equations between
them are well described in the book Electronic Conduction in
Solids by Smith, Janak and Adler [1]. The specific case of
metals and metallic alloys is described in Barnard’s [2] book
Thermoelectricity in Metals and Alloys. The terminology used
below is that used by these authors.

In general a gradient of something induces a force, which
itself induces a density of flux. The problem is to make a
proper choice of fluxes and forces [1]. A gradient of potential
�∇V induces a density of electric current �J . The electrical
conductivity σ is defined by the relation �J = −σ∇⇀V when
�∇T = 0. A gradient of temperature �∇T induces a density
of heat flux �Q. The thermal conductivity λ is defined by
the relation �Q = −λ �∇T when �J = 0. But a gradient of
temperature can also induce an electric current and a gradient
of potential can induce a heat flux. These phenomena are called
the thermoelectric effects.

The current density and the heat flux density are linked to
gradients of temperature and potential respectively [1, 3] by

J
⇀

e = e2 K11 �E − (e/TK )K12(−�∇TK )

�Qe = −‖e‖K21 �E + (1/TK )K22(−�∇TK ),
(1)

where J
⇀

e is the density of current, �Qe is the density of heat flux
and − �E = �∇V is the gradient of potential

The coefficients Ki j are not directly measured or
experimentally measurable. It is necessary to introduce other
(more) physical quantities.

At zero temperature gradient (uniform temperature) we
have

�Je = σ �E = −σ �∇V (2)

σ = e2K11. (3)

This is the so-called microscopic Ohm law; σ is the
electrical conductivity.

Always at zero temperature gradient we have

�Q = −‖e‖K21 �E = −‖e‖K21

e2K11
J
⇀

e = π �Je, (4)

π being the Peltier coefficient of a component (pure metal or
alloy).

At zero density of current �Je = 0 (one opens the circuit)

�Qe = −λ �∇T, (5)

with λ = K22 K11−K12 K21
TK K11

this is the Fourier law: λ is the thermal
conductivity.

Always at zero density of current we have

�E = −K12

(‖e‖K11TK )
(−�∇TK ) = S �∇TK . (6)

S is the absolute thermoelectric power (or Seebeck coefficient)
of a component (pure or alloy). A relation between π and S
can be found:

π = −K21

K12
TK S = TK S. (7)

This is the first Kelvin relation. The second Kelvin
(–Onsager) relation links the Thomson coefficient h to the
Seebeck coefficient S (see Barnard [2], equation 1.73):

h = TK
dS

dTK
. (8)

Thus the knowledge of one of the Peltier, Thomson and
Seebeck effects induces the knowledge of the two others, either
by an algebraic relation (first Kelvin’s law) or by an integration
or derivation (second Kelvin’s law).

The electric current carried by one electron is e�v fk . The
heat flux carried by one electron is (Ek − μe)�v fk . The current
and the heat carried by all the electrons in conductors are

�J = q
∫

Z B
�v fk

dVk

4π3
(9)

and
�Q = q

∫
Z B

(Ek − μe)�v fk
dVk

4π3
. (10)

If the calculation is carried out, one can finally show that
for metals one has (Barnard [3], equation 3.57)

S (E) = π2

3

k2
BTK

e

[
∂ ln σ(E)

∂ E

]
E=μF

or

S (E) = π2k2
BTK

3 |e| E

∣∣∣∣∂ ln (ρ (E))

∂ ln (E)

∣∣∣∣
(11)

and

λ = (L0 − S2)TK

ρ
∼= L0TK

ρ
. (12)

The approximation of equation (12) which neglects the
thermopower S is known as the Wiedemann–Franz law with

L0 = π2

3
k2

B
e2 L0 where L0 is the ‘Sommerfeld value of the

Lorenz number’. There is however no problem in using
the exact expression of equation (12) if the thermopower is
measured.

To summarize: a potential gradient creates a density
of current. At zero temperature gradient, it defines σ . A
temperature gradient creates a density of heat flux. At zero
density of current it defines λ. Crossed effects exist: a
temperature gradient creates an electric field (Seebeck effect)
and a density of current creates a density of heat flux (Peltier
effect). The three thermoelectric effects (Peltier, Seebeck and
Thomson) are linked by the two Kelvin’s laws. The Seebeck
coefficient is proportional to the derivative of the electrical
resistivity with respect to the (Fermi) energy. The thermal
conductivity is linked to the electrical conductivity and to
the Seebeck coefficient. A simplified expression where the
thermopower S is neglected is called the Wiedemann–Franz
law. It has been shown [4] that for liquid metals this law
is valid with an accuracy of 1–10% (see figure 4 of [4]).
Thus measuring two properties allows the knowledge of all
the electronic transport properties which are very sensitive
to the chemical ordering. This is important because it is
easier to measure accurately the electrical conductivity and
the thermopower than the thermal conductivity. Indeed, λ

is supposed to be measured in a static fluid. This never
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occurs because the gradient of temperature, which is necessary
to measure λ, also creates convective effects (except in
microgravity!). Moreover, the Seebeck coefficient can be
related to the electrical conductivity by a derivation with regard
to energy of the electrical resistivity [2].

3. Thermoelectric coefficients measured in the
laboratory

One cannot practically measure the Seebeck and Peltier
coefficients of a single component (pure element or alloy),
using equations (4) and (6). From an experimental point of
view one can only measure the difference of two ‘absolute
thermoelectric powers’ of two components by realizing a
‘(thermo-) couple’. To get the ‘absolute’ thermopower of
a component it is necessary to measure the e.m.f. of a
couple, to differentiate it with respect to temperature and to
subtract the ‘absolute’ thermopower of the second component
constituting the couple. Thus it is necessary to know the
absolute thermoelectric power of at least one component.

The Thompson coefficient of a component (metal or alloy)
is the only ‘absolute’ coefficient of a component which is
directly measurable (it does not need a junction but it is a
very difficult experiment). If a current passes through a wire
where a temperature gradient exists, a release or absorption
of heat exists, following the direction of the current and of
the temperature gradient, and proportional to the Thomson
coefficient. Practically, this has been done at the National
Bureau of Standards by Roberts [5] for very pure platinum
(called ‘platinum 67’).

Using the second Kelvin law S(T ) = ∫ T
T =0 K

h dT
TK

one can deduce the Seebeck coefficient of an element by
integrating the Thomson coefficient from zero kelvin to
the considered temperature. It needed three different very
accurate calorimeters (the reversible Thomson effect is about
a hundred times smaller than the quadratic Joule effect) and
thanks to Roberts [5] ‘platinum 67’ is now the standard of
thermoelectricity.

Knowing the ATP of one component and measuring the
ATP of a couple, we can obtain the ATP of all components.
In our laboratory we calibrate systematically all wires that we
use for thermoelectric measurements in general pure tungsten
and tungsten–26% rhenium which are not dissolved in liquid
metals. Our most used experimental cell is represented in
figure 1. A gradient of temperature or of potential may be
applied to the liquid (or solidified) sample.

4. Understanding the physics of the electronic
transport properties of liquid metals and alloys

In dense matter, the internal electrons are scattered by the ions
in the presence of the other electrons. These internal electrons
behave as neutrons or x-rays scattered by dense matter and the
formalism is similar for pure metals and alloys.

The electrical resistivity ρ and the thermoelectric power
S can be calculated by using the Ziman formula [6] for pure

Figure 1. Resistivity and thermopower measurement cell. The
measurement of the resistivity needs a long capillary and four
electrodes. The measurement of the ATP needs a gradient of
temperature and two couples immersed in the liquid metal (or in
electrical contact with it).

metals or the Faber–Ziman one [7] for alloys. The resistivity
of a pure metal is given by the formula

ρ = 3π2m2�0

e2h̄3k2
F

∫ 1

0
a(q)v2(q)4

(
q

2kF

)3

d

(
q

2kF

)
. (13)

a(q) is the structure factor, v(q) the model pseudopotential
form factor, kF the Fermi wavevector, �0 the mean atomic
volume and q the scattering wavevector (the other symbols
have their usual meanings). For liquid alloys, the term
a(q) v2(q) is simply replaced by

c1v
2
1 [1 − c1 + c1a11(q)] + c2v

2
2 [1 − c2 + c2a22(q)]

+ 2c1c2v1v2[a12(q) − 1]. (14)

The ai j (i, j = 1 or 2 for a binary alloy) are the set of
partial structure factors, the ci are the concentrations and the vi

are the model potential form factors in the alloy.
This formalism, valid only for normal metals, was first

extended to noble, transition, rare earth and semi-metals by
Evans [8] and to alloys by Dreirach et al [9] and others. Thus
the formalism is now general. The pseudopotential form factor
has been replaced by a t matrix expressed in terms of phase
shifts ηl of an incident plane wave scattered by a spherically
symmetrical potential. This method, called the ‘method of the
neutral pseudo-atoms’, consists of starting with the potential
of an atom corrected by taking into account exchange and
correlation as described by Makradi et al [10]. To this potential
correspond the term energies of the electrons on the different
electronic levels (figure 2). In dense matter, neighbouring
atoms lead to a superposition of their potentials. There is
no longer an asymptotic value of the potential tending to the
zero energy relative to vacuum (electron at infinity with zero
velocity), the highest potential is negative and the external
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Figure 2. Schematic pseudo-neutral atom potential.

Figure 3. Schematic potential for dense matter and apparition of
bands.

electrons of the atom give rise to energy bands (figure 3).
Two energies have been used: the energy ε relative to vacuum
used in the model pseudopotential formalism and the energy
E relative to the highest value of the potential barrier (in the
muffin tin approximation that we presently use).

4.1. Effect of temperature and pressure

In this representation (figure 4) the effect of temperature
and pressure can be well understood. The pressure tends
to decrease the interatomic distance while the temperature
tends to increase it. If there are practically no limits to
increasing pressure, increasing temperature reaches its limit
rapidly because of a liquid–vapour transformation. To keep
the fluid in its liquid form, it is necessary also to increase
pressure, but temperature remains the dominant effect. We
speak about expended liquid metals. It is clear on figure 4
that the Fermi energy E relative to the highest potential value
decreases with temperature and can even become negative, that
leads to a localization of the electrons and explains the metal–
non-metal transition. Inversely, high pressures increase the
metallic behaviour.

4.2. Muffin potentials, density of states and Fermi energy

Practically, if one has to make calculations, we need in
dense matter a spherical potential. Thus we use the muffin
tin approximation as described by Dreirach et al [9]. For
r values between zero and the muffin tin radius RMT the

Figure 4. Effect of pressure and temperature on the Fermi energy of
liquid metals.

potential is the result of the superposition of neighbouring
atoms weighted by their probability to be at a given distance
according to the Mukhopadhyay et al [11] method. To take the
interstitial region into account, a constant overlapping potential
is constructed between the muffin tin radius RMT and the
Wigner–Seitz radius RWS. We have represented in figure 5 the
muffin tin potential on the same scale as the electron energies,
i.e. the density of states, inverting the commonly used axes.
The energies used have to be clarified. We use the symbol ε

if we refer to the energy of vacuum. On this scale the muffin
tin potential zero εMTZ relative to an absolute energy scale is
represented. The energy E of electrons in the conduction band
is pertinently taken relative to the muffin tin zero potential as
well as the Fermi energy EF. The different approximations
used are represented in figure 5. Dreirach et al [9] considered a
free electron band whose bottom is at EB (positive or negative)
from the muffin tin zero potential. The energy relative to the
muffin tin zero potential is E = EB + h̄2k2

2m∗ ; respectively, the
Fermi energy is

EF = EB + h̄2k2
F

2m∗ . (16)

Esposito et al [12] considered that EB = 0 but correct the
free electron density of states (in fact the integrated density
of states) by a contribution due to Lloyd [13] which is an
explicit function of the scattering phase shifts at energy E . This
method corrects the density of states and allows the description
of noble and transition metals. In our approach, considering
that the density of states has to be corrected and that there is
no reason why the bottom of the band is exactly at the level of
the muffin tin zero potential, we combined both approaches.
Moreover, taking into account that some heavy polyvalent
metals like lead or bismuth may split their sp electrons into
two bands, we took this into account (Ben Abdellah et al [14]).
In Esposito’s [12] approach the Fermi energy is calculated
differently since the formula between E , EB and k is no longer
valid. The Fermi energy is determined by filling the density of
states by Z (an integer) electrons. Then we deduce kF by

kF = (2m EF)
1/2

h̄
(17)

4
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Figure 5. Comparison of the muffin tin potential with different shapes and positions of the conduction band.

and obtain an effective valence NC (not necessarily an integer)
from kF by

NC = k3
F�0

3π2
, (18)

where �0 is the atomic volume.

4.3. Energy dependent resistivity and thermopower

The extended Ziman formula can be written in an energy
dependent form:

ρ(E) = 3π2m2
e�0

4e2h̄3k6

∫ 2k

0
a(q) |t (q, E)|2 q3 dq, (19)

where �0 is the atomic volume and a(q) is the structure factor.
The squared t matrix |t (q, E)|2 replaces the squared form
factor of equation (13) and is characteristic of the scattering
of an electron by a muffin tin potential for the electron having
the energy E above the muffin tin zero potential, q is the
wavevector transfer between the incident electron wave and the
scattered electron wave, E is linked to k by

E = h̄2k2/(2m∗) + EB (20)

and the t matrix is

t (q, E) = − 2π h̄3

m
√

2m E�0

×
∑

�

(2� + 1) sin η�(E) exp(iη�(E))P�(cos θ). (21)

In the extended Ziman formula (formula (19)), the energy
appears in the prefactor (1/k6), in the upper integral limit k
and in the t matrix t (q, E). If one wants to compare to an
experimental resistivity, the energy E has to be taken at EF

and the wavevector k at kF.

4.3.1. Normal metals. The thermopower (or absolute
thermoelectric power (ATP) or Seebeck coefficient) is the
derivative of the resistivity (formula (11)); it is thus important
to know the shape of the resistivity versus energy curve. In
a first crude approximation we can consider that the product
a(q)t (q)2 is approximately a constant. The Ziman formula
can then be integrated analytically and gives a resistivity
proportional to 1/E (figure 6). This is consistent with figure 4.
Indeed, application of pressure increases the distance between
the highest value of the potential and the Fermi energy,
thus metallizes the system more. Conversely, increasing the
temperature, thus the distance between atoms, leads to a metal–
non-metal transition. The system becomes insulating when
the Fermi energy becomes lower than the potential barrier,
i.e. when energy E � 0. The resistivity being a decreasing
function of energy, the ATP of liquid metals is theoretically
always negative. In figure 7(a) [10] we plotted the resistivity of
liquid germanium as a function of energy with several ab initio
calculations. The resistivity is effectively a decreasing function
of energy, thus the ATP (figure 7(b)) is negative as observed
experimentally. This rule explains the negative thermopower
for most of the polyvalent liquid metals (In, Ga, Al, Ge, Sn,
Pb, Bi).

4.3.2. Noble and divalent metals. However, some metals do
not obey this rule. This is the case for some divalent metals like
zinc and for noble metals like copper and silver. The positive
sign is in contradiction with our first crude approximation
a(q)|t (q)|2 ≈ constant. But an explanation can easily be
found. One must only remember that the structure factor is
a curve which presents a sharp maximum, thus it is necessary
to modulate the 1/E resistivity curve by the maximum of the

5
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Figure 6. Why the resistivity versus energy is nearly 1/E-like.
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Figure 7. Why the ATP of normal metals is negative: example of germanium.

structure factor (figure 8). Indeed, the Fermi energy is situated
near the maximum of the structure factor. If the Fermi energy
is on the increasing side of the resistivity versus energy curve,
the thermopower is positive. This is the case both for noble
and for divalent metals. All our calculations (Makradi PhD
thesis [15] (figures 9(a) and (b))) show clearly that the positive
thermopower of zinc can be explained by the modulation of
the 1/E curve by the peak of the structure factor. Noble
metals also present a positive thermopower. The quantitative

calculations on liquid silver gives less accurate results due to
the difficult problem of finding the Fermi energy if one takes
into account the ten d electrons. The interesting result from a
qualitative point of view is the apparition of a sharp resonance
at the bottom of the s band (near 0.25 Ryd) due to the d density
of states (figure 10(a)), giving a sharp resistivity peak. We
only found a positive thermopower (figure 10(b)) by shifting
the bottom of the conduction band EB (unpublished results,
Ben Hassine thesis [16]). This means that the 1/E resistivity

6
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Figure 8. Modulation of the resistivity versus energy curve by the
main peak of the structure factor and why the thermopower of noble
and divalent metals is positive.

versus energy curve is also modulated by a sharp resonance
scattering coming from the η2 phase shift (figure 11(a)) [16].
This occurs for noble metals, but the Fermi energy lying in
the structure factor modulation peak explains as for zinc the
positive thermopower of silver. The resonance does not have a
direct effect on the electronic transport properties. It is worth
noticing that in certain circumstances (for example η0 for Cd
and Zn) we observed that a phase shift can cross the energy
axis, inducing an anti-resonance traduced by a deep minimum
in the resistivity versus energy curve. But we never observe
that the three phase shifts cross the energy axis at the same
energy, which would have given a funny ‘superconducting’
liquid metal resistivity strictly equal to zero.

4.3.3. Semi-metals with a gap or (and) pseudogap. Recently,
we were interested in the thermopower of liquid antimony
discussed in detail in another paper of this conference [17].
The thermopower of antimony is slightly positive and could
not be explained by the position of the Fermi energy near
the first peak of the structure factor nor by any d resonance
(figure 12). So we searched and found another explanation.
We must remember that the Ziman formula is only valid for
a free electron band and that the density of states presents,
according to Hafner [18], a gap that induces us to think that
the valence has to be Z = 3. With Z = 3 we obtained
a resistivity very near the experimental value (figure 12), but
the thermopower is even more negative. So we have also to
take into account the shape of the p density of states, which (as
calculated by Hafner [18] and presented in his figure 7) is far
from a free electron one. The DOS presents a sharp maximum,
then a kind of pseudogap. So it is both necessary to take into
account the existence of the gap and of a maximum in the p
DOS followed by a pseudogap to understand the resistivity and
ATP. We recalled that Mott et al [19] proposed to correct the
mean free path at the Fermi energy by

L = LZiman/g2 with g =
{

n(E)

n(E)free

}
EF

(22)

and took the interatomic distance as the lowest value of the
mean free path. Faber [20] demonstrated rigorously that

ρ = ρZiman

g2
. (23)

Consequently, one can correct the calculation of the
resistivity at the Fermi energy. We pursued Faber’s calculation

ρ(E) = ρZiman(E)

g2(E)
(24)

a b

=35.57

Zn T=660°C

Figure 9. Explanation of the positive thermopower of liquid zinc.
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a b

Figure 10. Explanation of the positive thermopower of liquid silver. Apparition of a resonance scattering at the bottom of the s band.

a b

Figure 11. The resonance scattering of liquid silver is due to the fact that η2 takes the value π/2. It also corresponds to a maximum in the
density of states. In figure 11(b) one observes that the parameter η0 passes through zero value, which corresponds to an anti-resonance.

by writing this equation at all energies and used the Hafner
density of states to correct the resistivity by g2(E) in the
whole domain of energy, then we differentiate it to obtain the
thermopower. This may introduce a third modulation of the
1/E curve (figure 13).

In figure 14 we see clearly the effect of the pseudogap
near 0.75 Ryd and the modulation by the 1/g2 curve. We
also discovered that this modulation was not the reason of the
positive thermopower of antimony, but that it comes from the
fact that the true density of states is much greater than the free

electron one at the bottom of the p band, thus the Fermi energy
is shifted from 0.56 Ryd to a much lower value (0.40 Ryd) and
comes into the structure factor peak modulation.

4.3.4. Transition metals. For transition metals the Fermi
energy is in the η2 resonance peak, which is at the same
energy as the structure factor modulation peak and is hidden
by the resonance peak. This is illustrated in figure 15 (Zrouri
et al [21]). However, the resonance peak induces a resistivity
nearly five times greater than the experimental one. If one

8
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Figure 12. Resistivity versus energy for liquid antimony.

EF

Figure 13. Schematic explanation of the modulation of the 1/E
resistivity curve by a pseudogap.

examines the density of states obtained with the Lloyd formula,
we observe that it is much higher and narrower than other
DOS calculations, thus inducing a too sharp resistivity peak.
It is thus necessary to improve the DOS calculation and thus
the resistivity and thermopower. The solution was found in
magnetic scattering effects; indeed, the electrons, either with
spin up or down, ‘see’ a different manganese potential, since
manganese presents a large number of unpaired electrons.
Within our assumption, the potential felt by an electron of spin
up differs from the one seen by an electron of spin down. This
gives rise to a two-band conduction mechanism. The Ziman
formula (19) written for the electron of spin α (α = up or

a

b

Figure 14. An explanation of the positive thermopower of antimony.

down) becomes

ρα (E) = 3πm2
e�0

4e2h̄3k6

∫ 2k

0
a(q) |tα(q, E)|2 q3 dq (25)

tα(q, E) = − 2π h̄3

m
√

2m E�o

×
∑

l

(2l + 1) sin ηα
l (E). exp(iηα

l (E))Pl(cos θ). (26)

The phase shifts ηα(E) are calculated from muffin tin
potentials for each spin direction. The total resistivity is simply
expressed as

1

ρ
= 1

ρup
+ 1

ρdown
. (27)

With this hypothesis we obtained a reasonable resistivity
versus energy curve (figure 16). We can also deduce and
explain why the first elements of the transition metal series like
scandium have a positive thermopower while the last ones like
nickel have a negative one.

4.3.5. Liquid binary and ternary alloys. In liquid alloys the
Ziman formula is simply replaced by the Faber Ziman formula:

ρalloy = 3πm2

h̄3e2k2
F

�o

∫ 1

0

∣∣talloy

∣∣2
4

(
q

2kF

)3

d

(
q

2kF

)
, (28)
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a b

Figure 15. Spin independent calculation of the resistivity and thermopower of manganese.

a b

Figure 16. Spin dependent calculation of the resistivity and thermopower of manganese.

with

c1|t1|2[1 − c1 + c1a11(q)] + c2 |t2|2
[
1 − c2 + c2a22(q)

]
+ c1c2(t

∗
1 t2 + t1t∗

2 )
[
a12(q) − 1

]
, (29)

where ci are the concentrations, ai j the partial structure factors
and ti the t matrix of element i in the alloy. In general, the
resistivity and thermopower are nearly linear interpolations
(or slightly convex) of the pure metals. However, in certain

circumstances it can happen that the Fermi energy, while
changing the concentration, crosses a resonance peak, inducing
larger resistivity or thermopower changes than expected by a
more or less linear interpolation. An example can be given
by the sodium–caesium alloy. The resistivity of caesium is
about 80 μ� cm while that of caesium is near 10 μ� cm. One
expects a more or less linear decrease from 80 to 10 μ� cm.
This is not the case, since the experimental resistivity increases

10
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Figure 17. Resonant scattering for the Na–Cs alloy.

ResistivityResistivity

Figure 18. Schematic anomalous behaviour of the resistivity of
ternary In50–(Mnx –Ni(1−x))50.

170 μ� cm in the middle of the phase diagram. If we plot
the resistivity of caesium and sodium versus energy (figure 17)
(Zrouri’s thesis [22]), it shows clearly that adding sodium to
caesium increases the Fermi energy, thus moves the resistivity
of caesium into an η2 resonance due to d electrons, and
explains at least qualitatively the sharp increase. Similarly,
some interesting results have been found and explained for Ni–
Mn–In ternary alloys by Rhazi et al [23, 24]. Schematically,
the resistivity of binary In–Ni and In–Mn is represented in
figure 18. The resistivity increases from about 40 μ� cm
for pure In to 80 μ� cm for pure Ni and 200 μ� cm
for pure Mn. The aim of our study was to examine the
Mn–Ni alloy. However, the measurement temperature being
too high, we decreased it by adding indium as a third low
temperature element. The resistivity became measurable. The
contribution to the resistivity of indium is small. However, an
important unexpected effect arises from the fact that indium,
bringing free electrons, moved the Fermi energy in both

resonance peaks of manganese and nickel. We worked with
50 at.% In and substituted Mn with Ni. We expected to move
regularly on the vertical line in the middle of the diagram
of figure 18, increasing continuously from the resistivity of
50 at.% In–50 at.% Ni to 50 at.% In–50 at.% Mn. To our great
surprise, adding manganese began to decrease the resistivity,
which only increased above 50 at.% Mn (figure 19(a)). A
possible qualitative explanation for this anomalous behaviour
is proposed in figure 19(b). In this figure we have represented
schematically the resistivity as a function of energy for pure
Mn and Ni (without spin effects and with a crude exchange
and correlation contribution). The resistivity of indium (not
represented) is a gentle 1/E decreasing function of energy.
Indium is a trivalent metal and brings three electrons per
atom. We can understand the anomalous behaviour of the
resistivity of the ternary alloy if we consider that if we replace
Ni by Mn we move from the left to the right in the region
of the full points (figure 19(b)). This means that the Fermi
energy of Mn is higher than that of Ni. The resistivity is
weighted by the concentration. With rich Ni content the
resistivity begins to decrease (blue squares) when we increase
the energy. But the weight of this curve becomes smaller when
the concentration in manganese increases. Simultaneously, the
weight of the manganese contribution increases (red circles).
The thermopower of nickel rich alloys is negative (negative
slope of the blue curve). As the concentration of manganese
increases, the thermopower becomes less negative.

5. Conclusion

(1) Different equations link the transport coefficients, espe-
cially the absolute thermoelectric power, the thermal and
the electrical conductivities.

11
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Figure 19. A tentative explanation of the resistivity of ternary In50–(Mnx –Ni(1−x))50.

(2) The thermopower is proportional to the derivative of the
resistivity with respect to energy. The resistivity versus
energy is thus the key function.

(3) The resistivity versus energy curve is a 1/E function
modulated by

• the structure factor,

• the resonance of the squared t matrix,

• the ratio of the density of states by the free electron
one g.

The ATP is positive on the increasing side of each of these
modulating functions.

The behaviour of alloys can also be understood in term
of resistivity versus energy curves. The problem is to know
how the Fermi energy shifts and passes through the modulation
peaks. The contributions of the different metals are weighted
by the composition, by the position of the peak of the structure
factor and by the shift of the Fermi energy of the alloy in all
these modulation peaks.

This formalism may explain the electronic transport
properties of normal, noble, transition or semi-metals and
alloys both in the liquid and in the amorphous state. It may
also explain the metal–non-metal transition under the effect of
high temperatures and pressures and the metal to non-metal
transition when a pseudogap is created in semi-metals or bad
semiconductors. The Ziman formula corrected by the g Mott
factor is very interesting since it splits the Mott corrected
Ziman formula into a scattering effect (mobility) and a number
of conduction electrons linked to the true density of states at
the Fermi energy.

6. Some open questions

It is worth asking if this new extended Ziman–Mott formula
is not much more general than believed. In particular, can
this formula be extended to solid polycrystalline materials
and to high-temperature metals and alloys? The scattering is
always described by a t matrix. Can the structure factor of a
disordered liquid or amorphous metal be simply replaced by
the structure factor of a real polycrystalline textured or not
metallic alloy as schematically represented in figure 20(a)?
Every experimentalist knows that adding only a few per cent of
aluminium or of chromium to pure nickel gives either a positive
or a negative ATP (in the chromel–alumel thermocouple).
Can this be explained by a displacement of the Fermi energy
through a structure peak of nickel identical to what happens in
the liquid state when adding a second element? Is it possible
to simply explain the nearly ten times smaller resistivity in
solid metals by the Fermi energy being in the structure noise
due to temperature, to impurities and to other defects? Is it
possible to explain the high resistivity of a quasicrystal by
the position of the Fermi energy being in a sharp diffraction
peak (see for example figure 20(b) shown by Rapp [25] at the
same conference)? Can this formula be adapted to (liquid)
semiconductors by using the Kubo formula?

σ = −
∫ +∞

−∞
σ(E)

∂ f (E)

∂ E
dE . (30)

Can two non-null contributions to the electronic transport
where scattering of electrons may occur at EV and EC where
σ(E) = 1/ρ(E) be calculated with the Ziman–Mott formula?
Can we consider that we may use

σ = 1

ρ(EV )
+ 1

ρ(EC)
?
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Figure 20. Can the Ziman–Mott formula explain the resistivity and thermopower of solid metals and alloys?

It is well known that the mobility of electrons is larger than
that of ‘holes’. This is consistent with the fact that ρ(E) is a
nearly 1/E decreasing curve. This is also consistent with the
sign of thermopower of semiconductors following the kind of
dominant scatterers. Is this simply ‘by chance’?

Acknowledgments

The present work is a synthesis of my present reflexions
on the electronic transport properties of liquid metals. This
work would not have been possible without my collaboration
with Professor Hugel to develop the potential and energy
dependent phase shift calculations. The theoretical work has
been developed by several students (Drs Makradi and Zrouri)
in the frame of their PhDs, and later by Dr Ben Abdellah, also
a PhD student and now assistant professor in a university in
Morocco. Some of the present results have been included in
the PhD thesis of some experimental PhD students (Drs Rhazi,
Bestandji, Ben Hassine and Mhiaoui) who interpreted their
measurements thanks to the programs elaborated. Thank you
very much to all of them.

References

[1] Smith A C, Janak J F and Adler R B 1967 Electronic
Conduction in Solids (Series in Phys. Quant. Electronics)
(New York: McGraw-Hill)

[2] Barnard R D 1972 Thermoelectricity in Metals and Alloys
(London: Taylor and Francis) p 30

[3] Young W H 1985 Electronic Transport Properties (Handbook
of Thermodynamic and Transport Properties of Alkali
Metals) ed R W Ohse (Oxford: Blackwell Scientific
Publications)

[4] Giordanengo B, Benazzi N, Vinckel J, Gasser J G and
Roubi L 1999 J. Non-Cryst. Solids 250–252 377

[5] Roberts R B, Righini F and Compton R C 1985 Phil. Mag. B 52
114

[6] Ziman J M 1966 Phil. Mag. 6 1013
[7] Faber T E and Ziman J M 1965 Phil. Mag. 11 153
[8] Evans R, Greenwood D A and Lloyd P 1971 Phys. Lett. A

35 57
[9] Dreirach O, Evans R, Güntherodt H J and Künzi U 1972

J. Phys. F: Met. Phys. 2 709
[10] Makradi A, Gasser J G, Hugel J, Yazi A and Bestandji M 1999

J. Phys.: Condens. Matter 11 671
[11] Mukhopadhyay G, Jain A and Ratti V K 1973 Solid State

Commun. 13 1623
[12] Esposito E, Ehrenreich H and Gelatt C D 1978 Phys. Rev. B

18 3913

13

http://dx.doi.org/10.1016/S0022-3093(99)00268-9
http://dx.doi.org/10.1080/14786436108243361
http://dx.doi.org/10.1080/14786436508211931
http://dx.doi.org/10.1016/0375-9601(71)90543-3
http://dx.doi.org/10.1088/0305-4608/2/4/015
http://dx.doi.org/10.1088/0953-8984/11/3/007
http://dx.doi.org/10.1016/0038-1098(73)90252-4
http://dx.doi.org/10.1103/PhysRevB.18.3913


J. Phys.: Condens. Matter 20 (2008) 114103 J-G Gasser

[13] Lloyd P 1967 Proc. Phys. Soc. 90 207
[14] Ben Abdellah A, Gasser J G, Makradi A, Grosdidier B and

Huge J 2003 Phys. Rev. B 68 184201
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